-
云数据仓库中的数据安全思虑
所属栏目:[大数据] 日期:2022-06-25 热度:197
近年来,由于云计算与云存储具有一定的廉价性和可扩展性,云数据仓库(Cloud data warehouses,CDW)得到了广泛的应用并飞速发展。同时,CDW不但能够存储比本地数据库更多的数据,而且可以通过现代化数据管道,简化了ETL的各种流程,因此许多企业都开始用[详细]
-
为何很多人宁可用 Excel 也不用 Python
所属栏目:[大数据] 日期:2022-06-25 热度:66
有人说,Python即使不是最好的编程语言,也是最受欢迎的语言之一。因为它简洁易用,功能强大,对初学者也很友好。在众多培训机构的小广告中,学了Python就能批量处理Excel表格,Python是实现办公自动化的利器,从此告别996之类的口号随处可见。但实际工作[详细]
-
数据团队来管理数据的年代是时候结束了
所属栏目:[大数据] 日期:2022-06-10 热度:94
最初使用的是数据仓库,然后是数据湖。如果大肆宣传是可信的话,那么现在是数据网格的时代了。 所有这些都依次被视为开启金融数据真正价值的灵丹妙药。那么,为什么数据的真正价值之前没有实现呢? 中心化的数据团队常常会在公司结构中造成瓶颈,阻碍整个企[详细]
-
成功进行数据转移的策略
所属栏目:[大数据] 日期:2022-06-10 热度:84
数据迁移是一个复杂且通常成本高昂的过程。企业将需要正确的方法来准确无误地迁移数据,其中包括深思熟虑的策略和适当的工具。 为什么需要数据迁移? 企业选择升级其存储系统并随之迁移数据有几个原因,最终帮助他们获得竞争优势。数据库迁移可帮助企业克服[详细]
-
实施合理的数据收集战略的重要性
所属栏目:[大数据] 日期:2022-06-10 热度:173
数据已经成为企业最宝贵的资产之一,而一些企业仍然否认它的重要性,但他们对接受它的犹豫正在消退。一项民意调查发现,36%的企业认为大数据对他们的成功至关重要。 然而,许多企业仍在努力制定持久的数据战略。最主要的一个问题是他们没有可靠的数据收集[详细]
-
怎样避免淹没在云原生可观测性数据中
所属栏目:[大数据] 日期:2022-06-10 热度:87
传统的应用程序性能监视(APM)在新的云原生堆栈中并不总是能发挥作用,两者在规模和数据量方面存在根本差异。此外,当一切都在容器中运行时,必须围绕数据的临时性设计和优化监视。 了解云原生性能可以更好地为站点可靠性工程师(SRE)和平台工程师提供实时洞[详细]
-
使用取代数据的五个隐性成本
所属栏目:[大数据] 日期:2022-06-10 热度:67
如今,替代数据源已嵌入到各个行业的企业业务流程中。根据Lowenstein Sandler 律师事务所2022 年的一项调查,92% 的投资机构(从对冲基金、私募股权到风险投资)都在以中等或很大的程度使用替代数据来为决策提供依据。受访者还预计,他们在 2022 年对替代数[详细]
-
2022年应关注的七大数据管理走势
所属栏目:[大数据] 日期:2022-06-10 热度:56
调研机构IDC公司分析师表示,数据分析市场正在蓬勃发展,目前全球每年的支出已经超过2000亿美元。 同样,全球数据分析就业市场规模也呈现上升趋势。根据美国劳工统计局预测,到2030年,数据科学职位将增长30%以上。此外,根据Gartner公司的估计,几乎所有[详细]
-
数据科学中数据收集的终极攻略
所属栏目:[大数据] 日期:2022-06-10 热度:62
在当今世界,数据对任何一家企业的成功都起着关键作用。企业的目标受众、竞争对手产生的数据、工作领域的信息以及企业自己收集的数据可能会帮助找到更多客户、分析业务决策、重新优化业务模型或进入到其他市[详细]
-
8个顶级预测分析工具对比
所属栏目:[大数据] 日期:2022-06-10 热度:191
希望知道未来会带来什么吗?预测分析工具将会提供答案,这些答案是对的吗?有时是对的。但是,如果预测可以帮助企业更好地规划、更明智地支出,并为客户提供更具预见性的服务,那么这就足够了。 什么是预测分析工具? 预测分析工具融合了人工智能和业务报告。[详细]
-
大数据技术的成功案例及趋向
所属栏目:[大数据] 日期:2022-06-10 热度:128
通过大数据技术和工具进行数据管理已经成为企业乃至国家层面的一个热门话题。如今,主要是大型企业在使用大数据技术(约占市场的60%)。然而,使用这种技术的中小企业数量每年都在增长。特别是在人工智能技术发展的今天,我们能够更加充分利用数据的价值。[详细]
-
为什么不可忽视建筑物中的数据分析?
所属栏目:[大数据] 日期:2022-06-10 热度:80
想象一栋建筑,其中创新的管理系统不断提供有关内部情况的简单而有意义的信息。这些数据可用于提高效率、开发更智能的设备维护协议、创建更健康的建筑环境,并最终让使用者更快乐。 现在,考虑一个没有用于监控其系统的分析的建筑物。设备出现故障,存在空[详细]
-
2022年,AI将给网络安全行业带来什么?
所属栏目:[大数据] 日期:2022-06-09 热度:69
近年来,人工智能(AI)已经成为了我们日常生活中重要的组成部分。各种算法通过执行一系列与市场决策相关的任务,以发现在基本技术实现之外的、与人类习惯有关的洞察。在YouTube和TikTok上使用的建议算法,会根据您的反馈,提供个性化的内容。而虚拟地图之类[详细]
-
2022,大模型还可以走多远
所属栏目:[大数据] 日期:2022-06-09 热度:183
2021 年是大模型层出不穷的一年。从去年 OpenAI GPT-3 发布开始,今年华为、谷歌、智源、快手、阿里、英伟达等厂商先后推出自己的大模型,人工智能产业开始了新一轮的激烈角逐,而且有愈演愈烈之势。作为探索通用人工智能的路径之一,AI 大模型不仅本身是[详细]
-
无代码可重用的人工智能将怎样跨越人工智能的鸿沟
所属栏目:[大数据] 日期:2022-06-09 热度:134
重复使用预先构建的人工智能解决方案和组件以及无需编码即可对其进行自定义,最终将允许企业创建人工智能解决方案,而无需雇佣人工智能专业人士或采用成本昂贵的 IT 资源。 人工智能技术先驱、麻省理工学院教授 J.C.R. Licklider 于 1960 年在他撰写的一篇[详细]
-
AI可以跨过GitHub危机吗?
所属栏目:[大数据] 日期:2022-06-09 热度:106
机器学习如今正在面临一些危机,将会阻碍该领域的快速发展。这些危机源于一个更广泛的困境,即科学研究的可重复性。根据《自然》杂志对 1,500 名科学家进行的一项调查,70% 的研究人员曾尝试复制其他科学家的实验但未能获得成功,50% 以上的研究人员未能复[详细]
-
2022年人工智能趋向AI将如何影响你?
所属栏目:[大数据] 日期:2022-06-09 热度:174
人工智能(AI)在2022年及以后将在我们的生活中扮演哪些更重要的角色?以下或许是人工智能大有可为的几个方面。 元宇宙和AI相碰撞 元宇宙结合了虚拟现实、增强现实、在线世界、定制体验和游戏。这使得人们可以完全在网上沟通交流、成交业务和塑造个性,这[详细]
-
不要想当然认为人工智能不会替代你的工作!
所属栏目:[大数据] 日期:2022-06-09 热度:93
我们已经看到,一些平淡无奇或单调乏味的任务已经被机器人或自动化所取代,那么怎样才能阻止它们让我们所有人都失业呢? 希望总是存在的:有很多工作还需完全依赖于人的素质,比如创造力或同情心。这些是计算机程序无法复制的东西难道可以复制?接下来,让我[详细]
-
通过AI系统分级协助企业控制成本
所属栏目:[大数据] 日期:2022-06-09 热度:192
就像国际汽车工程师学会(SAE)对自动驾驶汽车分级一样,为了预测人工智能系统的成本,给它们分个级别想必也是不错的选择。采用分级系统可以帮助组织计划和准备AI系统,且随着时间的推移,AI系统的复杂性也会不断增加。 设计和构建人工智能系统不是件容易事[详细]
-
智能虚拟助理如何助力你在2022年成倍提高工作效率
所属栏目:[大数据] 日期:2022-06-09 热度:188
智能虚拟助理 (IVA, Intelligent Virtual Assistants) 也称为智能个人助理 (IPA, Intelligent Personal Assistants) ,是由人工智能驱动的代理,能从客户元数据、先前对话、知识库、地理位置、以及其他模块化数据库和插件等环境中提取信息,并生成个性化响[详细]
-
Twins重新思量高效的视觉注意力模型设计
所属栏目:[大数据] 日期:2022-06-09 热度:61
Twins [1] 是美团和阿德莱德大学合作提出的视觉注意力模型,相关论文已被 NeurIPS 2021 会议接收,代码也已在GitHub上进行开源。NeurIPS(Conference on Neural Information Processing Systems)是机器学习和计算神经科学相关的学术会议,也是人工智能方[详细]
-
2022年优质预测分析工具和软件
所属栏目:[大数据] 日期:2022-06-09 热度:188
数据管理一直是企业面临的挑战。随着新的数据源不断涌入,使用合适的工具比以往任何时候都更为关键。预测分析工具和软件是完成这项任务的最佳解决方案。数据专家和商业管理者必须能够组织和清理数据,以启动这一进程。随后是对数据进行分析,并与同事分享[详细]
-
反映数据质量的八个指标
所属栏目:[大数据] 日期:2022-06-09 热度:186
数据的质量直接影响着数据的价值,并且还影响着数据分析的结果以及我们依此做出的决策的质量。质量不高的数据不仅仅是数据本身的问题,还会影响企业的经营管理决策;数据错误还不如没有数据,因为没有数据时,我们会基于经验和常识做出不见得是错误的决策,[详细]
-
如何采用大数据技术帮助制定数字化策略?
所属栏目:[大数据] 日期:2022-06-09 热度:184
数字化采用被定义为通过优化遗留系统和利用新技术来重塑企业。近年来,大数据一直是数字化采用的中心。这就是全球各地方的公司去年在大数据技术上花费1620亿美元以上的原因。 整个过程远不止这些,但采用新技术并将其集成到业务工作流程中是关键。为了简化[详细]
-
价值变现的关键是组织优化和数据治理
所属栏目:[大数据] 日期:2022-06-09 热度:119
大数据、数据治理、数据湖以及目前被热议的数据中台概念,无不让企业信息化部门疲于跟进,而不是根据企业的实际情况决定建设节奏。企业A的IT部门,就曾受到业务部门要求建设数据中台的压力,但迟迟难以下决心启动数据中台项目。 从A企业的视角来看,目前,[详细]