-
视频时代的大数据 问题 挑战与处理方案
所属栏目:[大数据] 日期:2022-05-20 热度:141
视频时代的大数据 问题 挑战与处理方案: 一、介绍 人们所观察的世界无时无刻不在改变,造就了视频相比于文本等类型的数据更具表现力,包含更加丰富的信息。如今,能够产生视频的数据源及应用场景愈发多样,视频数据的规模不断增长,视频大数据成为支撑诸[详细]
-
数据分析的12个神话被揭露
所属栏目:[大数据] 日期:2022-05-20 热度:67
从数据问题到人员需求再到技术组合,数据分析的误解比比皆是。下面我们来看看如何利用数据科学来实现真正的业务成果。 在IT领域,炒作越大,误解越多,数据分析也不例外。分析是当今信息技术最热门的方面之一,可以带来巨大的商业收益,但错误的观念可能会[详细]
-
为何企业必须采用大数据战略?
所属栏目:[大数据] 日期:2022-05-20 热度:152
智能企业利用各种形式的海量数据来更好地了解消费者、管理库存、优化物流和运营程序,并做出合理的业务选择。成功的公司也认识到处理他们产生的大量大数据的重要性,以及发现可靠的方法来从中提取洞察力。制定大数据战略以正确有效地存储、组织、处理和利[详细]
-
数据分析,如何赐能业务?
所属栏目:[大数据] 日期:2022-05-20 热度:141
做工作规划的时候,有很多公司都提出要求,要数据赋能业务/赋能销售/赋能运营到底啥玩意是赋能,咋个赋能法???往往领导又丢回一句你要多想想啊让人着实无奈。今天我们系统解答一下。 前方剧透警报:因为大量用了电视剧《亮剑》的梗,所以忘记的同学们可以[详细]
-
数据分析七大实力 梳理数据需求
所属栏目:[大数据] 日期:2022-05-20 热度:119
大家好,我是爱学习的小xiong熊妹。 今天分享数据分析师必备的工作能力需求梳理。需求梳理很不起眼,甚至很多小伙伴感受不到他的存在。但它结结实实影响到大家的下班时间和绩效。 一、什么是数据需求? 顾名思义,数据需求,就是业务部门对数据分析产出的需[详细]
-
HDFS 为什么在大数据领域经久不衰?
所属栏目:[大数据] 日期:2022-05-20 热度:148
HDFS 为何在大数据领域经久不衰? 1.概述 1.1 简介 Hadoop实现的一个分布式文件系统(Hadoop Distributed File System),简称HDFS。 源自于Google的GFS论文,发表于2003年,HDFS是GFS的克隆版。 大数据中最宝贵、最难以代替的就是数据,一切都围绕数据。 HD[详细]
-
Java开发人员需要明白的地域分布数据库
所属栏目:[大数据] 日期:2022-05-20 热度:80
在过去的七年里,我一直在使用分布式系统、平台和数据库。早在2015年,许多架构师就开始使用分布式数据库扩展单个机器或服务器的边界。他们选择这样的数据库是因为它的水平可伸缩性,尽管它的性能依然只能与传统的单服务器数据库相媲美。 现在,随着云原生[详细]
-
Flink 在 B 站的多元化探索与践行
所属栏目:[大数据] 日期:2022-05-20 热度:132
本文整理自哔哩哔哩基础架构部资深研发工程师张杨在 Flink Forward Asia 2021 平台建设专场的演讲。主要内容包括: 1.1 基础功能完善 在平台的基础功能方面,我们做了很多新的功能和优化。其中两个重点的是支持 Kafka 的动态 sink 和任务提交引擎的优化。[详细]
-
谈谈大数据技术现状和分类
所属栏目:[大数据] 日期:2022-05-19 热度:198
随着社交媒体、物联网和多媒体应用等各种来源产生的海量数据的诞生,大数据已经成为一个重要的研究领域。大数据在许多决策和预测领域发挥了关键作用,如推荐系统、商业分析、医疗保[详细]
-
大数据在智慧城市建设中有什么应用
所属栏目:[大数据] 日期:2022-05-19 热度:116
智慧城市是以为民服务全程全时、城市治理高效有序、数据开放共融共享、经济发展绿色开源、网络空间安全清朗为主要目标,通过体系规划、信息主导、改革创新,推进新一代信息技术与城市现代化深度融合、迭代演进,实现国家与城市协调发展的新生态。 智慧能源[详细]
-
终于有人把元数据说明白了
所属栏目:[大数据] 日期:2022-05-19 热度:97
元数据管理工具是企业数据治理的重要抓手,它可以帮助企业解决数据查找难、理解难等问题,促进数据的集成和共享。 一、系统架构 从应用角度看,元数据管理平台可分为数据源层、元数据采集层、元数据管理层、元数据应用层四层架构,如图1所示。 1. 数据源层[详细]
-
数据剖析的几个误区
所属栏目:[大数据] 日期:2022-05-19 热度:144
在IT领域,炒作越大,误解越多,数据分析也不例外。分析是当今信息技术最热门的方面之一,可以带来巨大的商业收益,但错误的观念可能会阻碍分析能力顺利和及时的流转,从而使商业用户和最终客户受益。当企业创建或扩大他们的分析战略时,以下是他们可能要[详细]
-
数据管理的现实和商业智能的将来
所属栏目:[大数据] 日期:2022-05-19 热度:116
无论企业在哪个行业工作,拥有多少员工,或者是否面向消费者、企业、私营部门或公共部门进行营销,都不再重要。无论来自哪里,数据和分析都是日常现实。大多数企业定期收到的数据量是天文数字。全球的IT部门都在努力实施工具和实践,对他们收到的信息进行[详细]
-
详解数据管理发展的五个阶层
所属栏目:[大数据] 日期:2022-05-19 热度:132
近年来现代化企业都在改革现有的数据管理体系,优化原有的基于策略定义的数据管理模型,逐渐开始使用基于数据使用行为的数据管理方式。以确保数据不仅可用,而且保持活性,从而始终让数据资产充分发挥本身价值。 从历史的视角看,数据管理是一个不断进化发[详细]
-
数据在网络中是怎样传输的
所属栏目:[大数据] 日期:2022-05-19 热度:63
整个请求交互过程分为了几个部分,首先最上层就是应用程序,接着往下是 Socket 库。 再下面就是操作系统的内部了,这里面就包括了协议栈,协议栈上半部分为 TCP 和 UDP ,它们都是负责数据的收发。 只是一个需要 连接,一个不需要连接可以直接收发数据,这两[详细]
-
区块链在 数据为王 的年代扮演了什么角色?
所属栏目:[大数据] 日期:2022-05-19 热度:90
在当今数据为王的时代,数据作为企业、组织、乃至国家的战略资产,其重要性不言而喻。今天老蔡想和大家一起探讨下以下几方面的问题:1. 数据管理的全生命周期;2. 传统数据治理的弊端;3. 当代信息技术间的相互关系;以及4. 最后抛出区块链技术在数据治理[详细]
-
行业大数据有什么安全风险
所属栏目:[大数据] 日期:2022-05-19 热度:66
网际空间安全面临的威胁越来越多样化。移动网络、云和虚拟化、物 联网、工控系统等技术领域的快速发展,使得保护对象和攻击路径都变得 更加复杂。而攻击来源也从早期的个人黑客变为犯罪团伙、政治势力、网 络部队等更严密的组织。甚至大数据技术本身也被攻[详细]
-
Spark SQL 字段血缘在 vivo 互联网的践行
所属栏目:[大数据] 日期:2022-05-19 热度:107
字段血缘是在表处理的过程中将字段的处理过程保留下来。为什么会需要字段血缘呢? 有了字段间的血缘关系,便可以知道数据的来源去处,以及字段之间的转换关系,这样对数据的质量,治理有很大的帮助。 Spark SQL 相对于 Hive 来说通常情况下效率会比较高,对[详细]
-
调整数组元素顺序 你明白几分?
所属栏目:[大数据] 日期:2022-05-19 热度:128
有一个整数数组,我们想按照特定规则对数组中的元素进行排序,比如:数组中的所有奇数位于数组的前半部分。 实现思路 我们通过一个实例来分析下:假设有这样一个数组:[2, 4, 5, 6, 7, 8, 9, 11],将奇数移动到最前面后,就是:[11, 9, 5, 7, 6, 8, 4, 2][详细]
-
数据即服务 供给即时数据的顶级供应商
所属栏目:[大数据] 日期:2022-05-19 热度:122
并非所有可能使企业受益的数据都可以通过内部方式轻松生成、清理和分析。数据即服务提供商则是可以为企业提供数据即用型数据使用的实体。 云计算提供商 所有主要的云计算公司都为其客户维护大量开放数据集。在许多情况下,数据是免费的,并作为使用本地计[详细]
-
数据映射优秀实践 类型 办法和工具的简要指南
所属栏目:[大数据] 日期:2022-05-19 热度:155
在任何应用程序集成、数据迁移以及一般的数据管理计划中,数据映射都是最关键的步骤之一。甚至可以这么认为:集成项目的成功在很大程度上取决于源数据到目标数据的正确映射。 本文将探讨有关数据映射的优秀实践,包括类型、常用方法以及一些有用的数据映射[详细]
-
终于有人将数据 信息 知识讲明白了
所属栏目:[大数据] 日期:2022-05-19 热度:56
数据无处不在,只是它们没有实体。 过去,人们习惯把数字的组合称为数据。但在今天,这样的理解显然不够全面。那么是否可以把数字、字符、字母的集合称为数据?也不准确。 在今天大数据的语境中,数据是可以被记录和识别的一组有意义的符号,一般可通过原[详细]
-
2022年企业必须关注的几个大数据应用战略
所属栏目:[大数据] 日期:2022-05-19 热度:112
大数据是一个通用术语,指的是结构化和非结构化数据集合,它们对于典型的数据处理工具和系统来说过于庞大和复杂,因此难以处理。预测分析、用户行为分析以及其他从大数据中提取价值的高级数据分析方法,通常由大数据解决方案提供支持,并且很少局限于特定[详细]
-
您是不是在楼宇安全中使用大数据?
所属栏目:[大数据] 日期:2022-05-19 热度:192
谈到大数据,物理安全有点姗姗来迟。企业已将各种数据源用于多种目的,例如向消费者进行营销(如谷歌、亚马逊和 Facebook)、提高运输效率(如包裹跟踪、航班调度和自动驾驶汽车),以及改善医疗保健服务(如、病历管理、人工智能辅助药物开发和患者健康风险评[详细]
-
Gartner公布2022年数据分析十二大趋势
所属栏目:[大数据] 日期:2022-05-19 热度:111
关于数据的几项事实是:如今国内数据利用率仍然很低,企业数据孤岛问题显著,但数据分享成为更加主流的趋势,数据外泄的风险性愈发低于分享赢得的价值...... 对于企业来说,四种趋势和数据息息相关,发挥数据的潜在价值将带来新机会。 AI工程化是Gartner在[详细]